Predicting Low Strength Properties of Wood Composite Panels using Bayesian Logistic Regression

Xia Huang

Yan Zeng

Research AssociateFormer GCenter for Renewable Carbon,AssistantUniversity of TennesseeDepartmentxhuang8@utk.eduOperation

Former Graduate Research Assistant Center for Department of Statistics, University Operations, Mgmt. Science, University of Tennessee

Professor Center for Renewable Carbon, University of Tennessee <u>tmyoung1@utk.edu</u>

Timothy M. Young

Frank M. Guess

Professor Department of Statistics, Operations, Mgmt. Science, University of Tennessee fguess@utk.edu

Outline

* Background

Data

* Missing Data Imputation

- Imputation Methods
- * Imputation Comparison

Predictive Model

- Variable Explanation
- * Bayesian Logistic Regression
- Results

* Summary

Background

Forest Product Industry

Background

5% of the total U.S. manufacturing gross domestic product (GDP)

\$175 billion a year in sales

Approximately 900,000 employees, earning \$50 billion in annual payroll

Top 10 manufacturing sector employers in 48 states

(American Forest and Paper Association,2012)

Research Goal & Objectives

Study Background

- The study was performed for a large-capacity wood composite panel manufacturing factory in the southeastern U.S.
 - Explore the prediction of Modulus of Rupture (MOR) and Internal Bond (IB) as a remedy to maintain product specification and minimize costs
 - Information loss due to sensor malfunction or data "send/retrieval" problems

Research Goal

Predicting low strength properties (MOR and IB) of wood composite panels

Objectives

- Focus on data quality and consistency in the use of imputation methods.
- Identify predictors influencing low strength properties
- Develop predictive model

Background

Data

Data

Predictors

- Sensor-collected process data
- 237 predictor variables in different units (i.e., fiber moisture, line speed, mat temperature, press pressure, etc.)
- Collected roughly by time order at different time intervals

Responses

- Obtained through destructive tests
- Modulus of Rupture (MOR) and Internal Bond (IB), both measured in kPa (kilopascal)
- ✤ Average MOR and IB

Data Structure

Ranges from			1	1	1	1	1	1		1
3,447 to 14,926 kPa 🕇	MOR	V1	V2	V3	V4	V5	V6		V237	
1	X	Х	x		x	x	X			
2	X	Х			x				Х	
3	X	Х			x					
4	Х	Х				x				
5	x	Х	х	x	x	x	x		х	Value
6	X	Х			x				Х	
7	′ X				x	x			Х	-
8	x	Х	X	х	х	х	X		Х	Observation
9	X	Х					X		X	4
4522	X	Х			x	x			X	

Problems

- Missing values are in <u>random pattern</u>
- Statistical packages such as JMP, SAS, R would remove observations with even one missing value when building prediction models, which causes great <u>information loss</u>

Data Structure

Ranges from							1		_
69 to 1,750 kPa <mark>–</mark>	🕈 ІВ	V1	V2	V3	V4	V5	V6	 V237	_
·	1 X	x	x		x	x	x		
	2 x	x			х			 Х	
	3 x	х			Х				
2	4 x	x				X			-
ļ	5 x	x	x	x	x	x	x	 х	Value
	6 x	x			X			X	
-	7 x				x	x		 x	-
		V	V	V	X		V		Observation
(X	X	X	X	X	X	 X	Observation
(9 х	Х					X	 X	4
4522	2 x	x			x	x		 X	

Problems

- Missing values are in <u>random pattern</u>
- Statistical packages such as JMP, SAS, R would remove observations with even one missing value when building prediction models, which causes great <u>information loss</u>

Data

Summary of Missing Values

Data

Responses

11 observations with response variable missing

Pre-screened Data

Data

Observations with no response are removed

Predictor variables and observations with more than 20% missing rate are excluded

	Response	V1	V2	V3	•••	V222
1	Х	Х	Х			
2	Х	Х				х
3	х	Х	Х	Х		Х
4	х	Х				Х
5	Х	Х	Х	Х		Х
6	Х	Х				Х
411	Х	Х				Х

3,647 observations with at least two or more fields missing

Collinearity

- A routine step of data quality assessment
- Correlation matrix and variation-inflation factors (VIF)
 - suggest some highly correlated predictors in the pre-screened data set
- Would affect later selection of statistical/modeling methods

Standardization

 $\underline{\mathbf{x}_{i}} - \overline{\mathbf{x}}$

where \overline{x} is the average of non-missing values, \hat{s} is the standard deviation of non-missing value

Missing Data Imputation

13

Variable Selection

Why?

Due to the constraint of computation resources required by iterated computation when imputing missing values, i.e., statistical packages SAS[®] or R[®] can become slow (EM)or may not converge (MCMC) on imputation results

Reduce the calibration model training time

Improve prediction performance for highly correlated data

A constrained version of the ordinary least squares (OLS) estimator, to achieve <u>*shrinkage*</u> and <u>*variable*</u> *selection* simultaneously

Sacrifice little variance for less bias in estimators

$$\hat{\beta}^{lasso} = \frac{\arg\min}{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$
(1)

$$\hat{\beta}^{lasso} = {}^{argmin}_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \right\}$$
(2)

n

Subject to
$$\sum_{j=1}^{p} |\beta_j| \le t$$

(least absolute shrinkage and selection operator)

Proposed by Tibshirani (1996)

Variable Selection Results

V2

Х

Х

Х

•••

V3

Х

Х

•••

•••

•••

•••

•••

•••

...

•••

•••

V107

Х

Х

Х

Х

Х

•••

(non-imputed datasets)

MOR

Х

Х

Х

Х

Х

Х

...

1

2

3

4

5

6

V1

Х

Х

Х

Х

Х

Х

•••

1,073 complete observations

Imputation

Imputation Methods

Substitution Mean/Median

Replace missing fields with the mean/median of the same predictor variable

"Hot-Deck" Method The simple random imputation method

Replace the missing value with a randomly selected value from in the same predictor variable

LOCF Last Observation Carried Forward

Replace the missing value with the last known value (observation) of the variable in a timeordered data set

EM algorithm Expectation-Maximization algorithm

"Expectation" Step - Given the observed data (including response variables), use available mean vector and covariance matrix for a multivariate normal distribution to calculate the conditional expectation of the complete-data log-likelihood

"Maximization" Step – Maximize above log-likelihood multivariate normal distribution to calculate the conditional, updating mean and covariance matrix

Use updated parameters to "impute" data, update mean and covariance matrix, iterate above two steps until convergence

MI procedure Multiple Imputation using Markov Chain Monte Carlo (MCMC)

Replace each missing value with a set of plausible values that represent the uncertainty of the correct value **MCMC** - combined with Bayesian inference of prior information to stimulate posterior distribution **Samples (estimated values for missing fields)** - drawn from posterior distribution **M "complete datasets** - Iterate above process for M times (e.g., 3 to 5 times) **A single point estimate** – Average the values across M complete datasets

Imputation

Method Comparison

Ten-fold Cross Validation

- Partition all complete observations in non-imputed
- 1. data as *a matrix* into ten subsets
- 2. Retain one subset as **validation set** and intentionally **remove as missing**
- **3.** Use rest of available data in *non-imputed dataset* to impute all missing fields *including earlier removed part*
- **4.** Compare imputed results with validation data, calculating Root Mean Square of Error (RMSE)

Repeat above process for each of ten subsets

Use two-fold as an example					
Х	Х	Х			
Х		Х			
Х	Х				
Х	Х	Х			
Х					
Х	Х	Х			
Х	Х	Х			

5.

Use two-fold as an example				
Х		Х		
Х		Х		
Х	Х			
	Х			
Х				
Х	Х			
		Х		

Use two-	Use two-fold as an example					
Х	X _E	Х				
Х	X _F	Х				
Х	Х	X _F				
X _F	Х	X _F				
Х	X _F	X _F				
Х	Х	X _F				
X _F	X _F	X _F				
X _F	X _F	Х				

Imputation

Results (MOR)

RMSEs from Imputations for <u>Standardized</u> Dataset with <u>MOR</u> as Response

RMSE	Mean	Median	Single	LOCF	EM	MI -
	Substitution	Substitution	Random			MCMC
			Imputation			
1	1.92	0.17	1.87	2.14	0.14	0.09
2	4.54	2.28	5.01	1.84	0.70	0.37
3	4.43	1.92	2.66	1.41	0.92	0.59
4	3.47	1.39	3.14	0.96	0.07	0.26
5	2.16	0.27	2.52	0.54	0.12	0.07
6	2.01	0.40	2.60	0.93	0.24	0.48
7	2.18	0.74	0.86	0.84	0.27	0.25
8	4.08	1.58	3.04	2.54	0.87	0.86
9	3.63	1.58	5.12	1.48	0.19	0.28
10	5.23	2.87	2.62	1.83	0.79	0.84
Average	3.37	1.32	2.94	1.45	0.43	0.41

Results (IB)

RMSEs from Imputations for <u>Standardized</u> Dataset with <u>IB</u> as Response

RMSE	Mean	Median	Single	LOCF	EM	MI -
	Substitution	Substitution	Random			MCMC
			Imputation			
1	3.08	0.77	4.92	0.08	0.33	0.33
2	4.55	1.15	1.44	0.92	0.65	0.79
3	2.48	1.46	0.57	1.70	0.27	0.25
4	4.16	1.08	2.84	2.31	0.98	0.90
5	3.92	0.34	2.61	1.43	0.12	1.41
6	2.47	1.09	2.55	2.06	0.10	0.00
7	2.24	1.63	1.99	0.74	0.11	0.15
8	2.26	0.79	1.48	0.75	0.43	0.66
9	2.96	0.51	1.46	1.79	0.64	0.45
10	3.49	0.05	5.04	0.05	0.59	0.37
Average	3.16	0.89	2.49	1.18	0.42	0.53

Results Summary

Imputation

EM and **MI-MCMC** achieve better results

No apparent differences between EM and MI-MCMC

EM a bit faster than MI-MCMC (Computation time for both is tolerable,20-30-min CPU time each. EM is 10% to 20% faster)

EM does better job for pre-screened data without variable-selection (MI-MCMC wouldn't converge when imputing the pre-screened data without variable selection)

Final Data with **222** predictor variables and **4,411** complete observations

Predictive Model

Descriptive Statistics for Responses (MOR and IB)

Predictive Model

Variable Explanation

Predictive Model

Principal Component Analysis (PCA) Removes Severe Collinearity among Predictor Variables

Use an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of *linearly uncorrelated* variables

Advantage – Reduce the number of variables, but incorporate as much information as possible

Final Predictor Factors after PCA – *13* independent factors, preserving *80%* variation

Variable Explanation

Predictive Model

		Variation
Factors	Description	Proportion
Factor1	Actual Line Speed; Actual Value Distance (01-28) left/right Forming Line Mat weight Set Point	33.70%
Factor2	ThCt pressure frame (05-07) left ThCt pressure frame (11-15,18-21,23) left/right	13.18%
Factor3	Top/Bottom Face Former Pounds per square Foot MPot (01-05,07-09)pressure Track 4 ThCt pressure frame 22 left/right Percent of speed 1 Water Injection Control Output	11.25%
Factor4	MPot (01-06) pressure Track 1 + 7	5.26%
Factor5	ThCt pressure frame 05-06 right	3.89%
Factor6	Steam Injection Control Output Top Face Former feet per Minute #1/#2 Dry Refiner Infeed Chip Temperature Top/Bottom Core Former feet per Minute	3.06%
Factor7	Face Resin GPM	2.30%
Factor8	Core Blender Motor current in percent	2.02%
Factor9	# 2 Dry Refiner Infeed Chip Temperature	1.41%
Factor10	Face Ratio Of Shavings Setpoint	1.35%
Factor11	Out Of Press Board Width	1.23%
Factor12	Press Temperature Zone (2-3) Core Resin Usage in Percent	1.19%
Factor13	Core Resin Percent Solids OD Wood	0.96%

Model

Logistic Regression

$$logit[\theta_i] = log_e \frac{\theta_i}{1 - \theta_i} \text{ where } \theta_i = \text{probability of occurrence of the even}$$
$$log_e \frac{\theta_i}{1 - \theta_i} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$
$$\theta_i = \frac{1}{1 + e^{-[\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n]}}$$

✤ No assumption on linearity and normality

Bayes' Theorem

$$p(\theta \mid y) = \frac{p(\theta, y)}{p(y)} = \frac{p(\theta)p(y \mid \theta)}{p(y)}$$

- Prior and posterior probability distributions
- Extend logistic regression model in a Bayesian framework (Xu and Akella 2008)
- Solution \diamond Use Bayesian Inference Methods for coefficient estimates (β)

Bayesian Logistic Regression

In Mathematics

$$\begin{split} p(y = 0 \mid x, M, D) &= \bigotimes_{b} p(y = 0, b \mid x, M, D) \P b \\ &= \bigotimes_{b} p(y = 0 \mid x, b, D) p(b \mid M, D) \P b \\ \end{split}$$
 where $p(y = 0 \mid x, b, D) \ = \ \{1 + \exp[-b^{\mathsf{T}}x]\}^{-1} \end{split}$

Priors

- Non-informative prior:
 - Prior 1: Uniform prior distribution
- Informative prior:
 - Prior 2: Gaussian prior distribution

$$p(\beta \mid \mu, \sigma^2) \propto \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(\beta-\mu)^2}{2\sigma^2}\right)$$

 $p(\beta) \propto constant$

Logic

Predictive Model

Results

Predictive Model

Significant Factors

Significant Factors	MOR	IB
Factor1	+	-
Factor3		+
Factor4	-	+
Factor5	+	
Factor6	+	-
Factor8		+
Factor12	-	

n /		
V	U	R

MOR			IB		
	Factor1	Actual Line Speed Actual Value Distance (01-28) left/right Forming Line Mat weight Set Point		Factor1	Actual Line Speed Actual Value Distance (01-28) left/right Forming Line Mat weight Set Point
	Factor4	MPot (01-06) pressure Track 1 + 7		Factor3	Top/Bottom Face Former Pounds per square Foot MPot (01-05,07-09)pressure Track 4 ThCt pressure frame 22 left/right
	Factor5	ThCt pressure frame 05-06 right			Percent of speed 1 Water Injection Control Output
i i		Steam Injection Control Output		Factor4	MPot (01-06) pressure Track 1 + 7
	Factor6	Top Face Former feet per Minute #1/#2 Dry Refiner Infeed Chip Temperatur Top/Bottom Core Former feet per Minute			Steam Injection Control Output
i –				Factor6	#1/#2 Dry Refiner Infeed Chip Temperature
	Factor12	Press Temperature Zone (2-3) Core Resin Usage in Percent	``	Factor8	Top/Bottom Core Former feet per Minute Core Blender Motor current in percent

Results (MOR)

Misclassification and *Correct Classification rates* for validation dataset with <u>MOR</u> as Response

Run	Classical Logist	ic Regression	Bayesian Logistic Regression (uniform prior)		Bayesian Logistic Regression (Gaussian prior)	
	Misclassification	Correct Classification Rate for y=0	Misclassification	Correct Classification Rate for y=0	Misclassification	Correct Classification Rate for y=0
1	0.32	0.67	0.32	0.67	0.32	0.67
2	0.29	0.76	0.29	0.76	0.29	0.76
3	0.24	0.81	0.23	0.83	0.24	0.81
4	0.22	0.8	0.22	0.8	0.22	0.8
5	0.28	0.74	0.28	0.74	0.28	0.74
6	0.3	0.74	0.3	0.74	0.3	0.74
7	0.32	0.74	0.31	0.78	0.31	0.78
8	0.34	0.72	0.33	0.72	0.34	0.72
9	0.34	0.61	0.33	0.65	0.34	0.63
10	0.3	0.65	0.3	0.63	0.3	0.63
Average	0.3	0.73	0.29	0.73	0.29	0.73

Misclassification and *Correct Classification rates* for validation dataset with <u>IB</u> as Response

Run	Classical Logist	ic Regression	Bayesian Logistic Regression (uniform prior)		Bayesian Logistic Regression (Gaussian prior)	
	Misclassification	Correct Classification Rate for y=0	Misclassification	Correct Classification Rate for y=0	Misclassification	Correct Classification Rate for y=0
1	0.3	0.69	0.29	0.69	0.3	0.69
2	0.22	0.72	0.21	0.74	0.21	0.74
3	0.19	0.82	0.18	0.88	0.19	0.82
4	0.26	0.75	0.26	0.73	0.26	0.75
5	0.15	0.87	0.14	0.88	0.15	0.87
6	0.21	0.86	0.2	0.86	0.2	0.86
7	0.18	0.81	0.18	0.81	0.18	0.81
8	0.19	0.77	0.19	0.77	0.19	0.77
9	0.21	0.78	0.21	0.78	0.21	0.78
10	0.21	0.8	0.19	0.82	0.21	0.8
Average	0.21	0.79	0.2	0.8	0.21	0.79

EM and **MI-MCMC** achieved more precise results for imputation

Bayesian Logistic Regression identified significant

factors influencing low strength properties

On average, Bayesian logistic regression had a correct classification

rate for low strength properties of 73% for MOR, and 80% for IB

References

American Forest and Paper Association. (2012). Economic Impact. Retrieved on 2012-10-31. http://www.afandpa.org/ourindustry.aspx?id=35

- Tibshirani, R. (1006). Regression shrinkage and selection via the LASSO. *Journal of the Royal Statistical Society*. 58 (1), 267-288.
- Xu, Z. and Akella, R. (2008). A Bayesian logistic regression model for active relevance feedback. *Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval*. 227-234.