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Background




Forest Product Industry

5% of the total U.S.
manufacturing gross domestic
product (GDP)

$175 billion ayear in sales

e

Approximately 900,000
employees, earning $50 billion
in annual payroll
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Top 10 manufacturing sector
employers in 48 states




Research Goal & Objectives

Background

Study Background

s The study was performed for a large-capacity wood composite panel manufacturing
factory in the southeastern U.S.

s Explore the prediction of Modulus of Rupture (MOR) and Internal Bond (IB) as a
remedy to maintain product specification and minimize costs
+ Information loss due to sensor malfunction or data “send/retrieval” problems

Research Goal

*» Predicting low strength properties (MOR and IB) of wood composite panels

Objectives

% Focus on data quality and consistency in the use of imputation methods.
¢ Identify predictors influencing low strength properties

s Develop predictive model






Raw Data

Predictors |

s Sensor-collected process data
s 237 predictor variables in different units

(i.e., fiber moisture, line speed, mat temperature, press pressure, etc.)
¢ Collected roughly by time order at different time intervals

Responses |

¢ Obtained through destructive tests

% Modulus of Rupture (MOR) and Internal Bond (IB), both measured in kPa
(kilopascal)

% Average MOR and IB




Data Structure

Ranges from

3,447 to 14,926 kPa ﬂMOR V1 V2 V3 V4 V5 V6 V237
X X X X X X
2l X X X X
3 X X X
4 X X X
5 X X X X X X X - Value
6| X X X X
7l X X X X
8 X X X X X X X X | Observation
9 X X X X
4522 X X X X X
Problems |
¢ Missing values are in random pattern

4

L)

» Statistical packages such as JMP, SAS, R would remove
observations with even one missing value when building
prediction models, which causes great information loss

)




Data Structure

Ranges from

69 to 1,750 kPa IB Vi V2 V3 V4 V5 V6 . | V237
X X X X X X

2l X X X X
3] X X X
4 X X X
5 X X X X X X X - Value
6| X X X X
71 X X X X
8 X X X X X X X X | Observation
9 X X X X

4522 X X X X X

Problems |

L)

0

» Missing values are in random pattern

» Statistical packages such as JMP, SAS, R would remove
observations with even one missing value when building
prediction models, which causes great information loss

4
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Summary of Missing Values

Every predictor variable has missing value,
" ranging from 2.4% to 81%

14 predictor variables had more than 20% of data
missing

N
B T Observations

Every observation has missing fields, ranging i

" from less than 0.5% to 90% :
|

. . |

Only Six observations have a missing rate |
above 20% /




Pre-screened Data

Response| V1 | V2 |V3| .. |V222

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1 X X | X
1 : : 3 2 X X
3 Observations with no response § 3 X x | x |x X
~areremoved i
: 4 X X
~ Predictor variables and 5 X | X |X X 3,647
~ observations with more than 6 observations
 20% missing rate are excluded with at least two
| | or more fields
e J 4411 X X | x missing

Collinearity

L)

*0

» Aroutine step of data quality assessment

» Correlation matrix and variation-inflation factors (VIF)
- suggest some highly correlated predictors in the pre-screened data set

% Would affect later selection of statistical/modeling methods

*
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Standardization

X - X

where X is the average of non-missing values, § is the standard deviation of non-missing value

u»



Missing Data Imputation




Variable Selection

Why?

Due to the constraint of computation resources required by
iterated computation when imputing missing values, i.e.,
statistical packages SAS® or R ® can become slow (EM)or may
not converge (MCMC) on imputation results

LASSO

(least absolute shrinkage and selection operator)
Proposed by Tibshirani (1996)

Reduce the calibration model training
time

Improve prediction performance for

highly correlated data A constrained version of the ordinary least squares

(OLS) estimator, to achieve shrinkage and variable
selection simultaneously

Sacrifice little variance for less bias in estimators

ﬁ“lasso — argr;in {Z?{:l(yi - By — ?=1 xfjﬁj)z + AZ?=1|3]'|} (1)

or

N v 2
presso = "R {Z (;vi ~fo= ) xijﬁj) } (2)

i=1

P
Subject to Z|ﬁj| =t

j=1



Variable Selection Results

(non-imputed datasets) Imputation

MOR | Vi1 |V2|v3| .. |Vi07
1 X X | X
2 X X
3 X X | X |X
4 X X
1,073 complete
5 x X x| . x | oObservations
6 X
4411 X X X IB Vi |v2 V3| .. | V86
1 X X | X
2 X X
3 X X | X |[X
4 X X
PR 1,194 complete
Missing Pattern observations 5 X X | X |[X
 Arbitrary °
(Missing at
Random) 4411 X X X




Imputation Methods

Substitution |Mean/Median A

Replace missing fields with the mean/median of the same predictor variable \)

“Hot-Deck” Method |The simple random imputation method D

Replace the missing value with a randomly selected value from in the same predictor variable

LOCF | Last Observation Carried Forward

Replace the missing value with the last known value (observation) of the variable in a time-
ordered data set

EM algorithm |Expectation-Maximization algorithm

“Expectation” Step - Given the observed data (including response variables), use available

mean vector and covariance matrix for a multivariate normal distribution to calculate the
conditional expectation of the complete-data log-likelihood

“Maximization” Step — Maximize above log-likelihood multivariate normal distribution to
calculate the conditional, updating mean and covariance matrix

Use updated parameters to “impute” data, update mean and covariance matrix, iterate
above two steps until convergence

MI proced ure | Multiple Imputation using Markov Chain Monte Carlo (MCMC)

Replace each missing value with a set of plausible values that represent the uncertainty of the correct value
MCMC - combined with Bayesian inference of prior information to stimulate posterior distribution

Samples (estimated values for missing fields) - drawn from posterior distribution

M “complete datasets - Iterate above process for M times (e.g., 3 to 5 times)

A single point estimate — Average the values across M complete datasets



Method Comparison

Ten-fold Cross Validation

1 Partition all complete observations in non-imputed
" dataas a maitrix into ten subsets

Retain one subset as validation set and
intentionally remove as missing

Use rest of available data in non-imputed dataset to
impute all missing fields including earlier removed part

calculating Root Mean Square of Error (RMSE)

— T e E Em Em Em mm mm

2
4 Compare imputed results with validation data,
)

Repeat above process for each of ten subsets

Use two-fold as an example Use two-fold as an example Use two-fold as an example Use two-fold as an example

X X X X X X X, X
X X X X X X X ) X
X X X X X X X Xe
X X X } X } X } X, X X,
X X X X ) )
X X X X X X X X,

X, X, X,
X X X X X X X, X, X




Results (MOR)

RMSEs from Imputations for Standardized Dataset with MOR as Response

RMSE Mean Median Single LOCF EM Ml -
Substitution Substitution Random MCMC
Imputation

1 1.92 0.17 1.87 2.14 0.14 0.09

2 4.54 2.28 5.01 1.84 0.70 0.37

3 4.43 1.92 2.66 1.41 0.92 0.59

4 3.47 1.39 3.14 0.96 0.07 0.26

5 2.16 0.27 2.52 0.54 0.12 0.07

6 2.01 0.40 2.60 0.93 0.24 0.48

7 2.18 0.74 0.86 0.84 0.27 0.25

8 4.08 1.58 3.04 2.54 0.87 0.86

9 3.63 1.58 5.12 1.48 0.19 0.28
10 5.23 2.87 2.62 1.83 0.79 0.84
Average 3.37 1.32 2.94 1.45 0.43 0.41




Results (IB)

RMSEs from Imputations for Standardized Dataset with IB as Response

RMSE Mean Median Single LOCF EM Ml -
Substitution Substitution Random MCMC
Imputation
1 3.08 0.77 4.92 0.08 0.33 0.33
2 4.55 1.15 1.44 0.92 0.65 0.79
3 2.48 1.46 0.57 1.70 0.27 0.25
4 4.16 1.08 2.84 2.31 0.98 0.90
5 3.92 0.34 2.61 1.43 0.12 1.41
6 2.47 1.09 2.55 2.06 0.10 0.00
7 2.24 1.63 1.99 0.74 0.11 0.15
8 2.26 0.79 1.48 0.75 0.43 0.66
9 2.96 0.51 1.46 1.79 0.64 0.45
10 3.49 0.05 5.04 0.05 0.59 0.37
Average 3.16 0.89 2.49 1.18 0.42 0.53




Results Summary

EM and MI-MCMC achieve better results

NO apparent differences between EM and MI-MCMC

EM a bit faster than MI-MCMC
(Computation time for both is tolerable,20-30-min CPU time each. EM is 10% to 20% faster)

EM does better job for pre-screened data without variable-selection
(MI-MCMC wouldn’t converge when imputing the pre-screened data without variable selection)

Choose EM for imputation

Final Data with 222 predictor variables and 4,411 complete observations



Predictive Model



Descriptive Statistics for Responses

(MOR and IB) Predictive Model

Data

Products : %2 UPINE % UPINE 3/8 UPINE, 5/8 UPINE,11/16 UPINE

189 standardized predictor variables and 1,084 complete observations

‘. Average MOR and IB as responses
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Variable Explanation

MOR | Vi |v2|v3| .. |vi89 IB vi |v2|v3| .. |vis9
1,477 X | X |X X 50 X | X |X X
Ymor=0 X | X |X X yig=0 X | X |X X
25% | 1,812 X | X |X X 25% 81 X | X |X X
X | X | X X X | X |X X

75% | 2,007 X | X |Ix| . X 75% 97

YvMor= YiB=

2,447 X | X | X X 134 X | X | X X

Principal Component Analysis (PCA) Removes Severe Collinearity among Predictor Variables

Use an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables

Advantage - Reduce the number of variables, but incorporate as much
information as possible

Final Predictor Factors after PCA — 13 independent factors, preserving
80% variation




Variable Explanation

Variation
Factors Description Proportion
Actual Line Speed,;
Factorl Actual Value Distance (01-28) left/right 33.70%
Forming Line Mat weight Set Point
Factor? ThCt pressure frame (05-07) left 13.18%

ThCt pressure frame (11-15,18-21,23) left/right

Top/Bottom Face Former Pounds per square Foot
MPot (01-05,07-09)pressure Track 4
Factor3 ThCt pressure frame 22 left/right 11.25%
Percent of speed 1
Water Injection Control Output

Factor4 MPot (01-06) pressure Track 1 + 7 5.26%

Factorb ThCt pressure frame 05-06 right 3.89%

Steam Injection Control Output
Top Face Former feet per Minute

Factorb #1/#2 Dry Refiner Infeed Chip Temperature 3.06%
Top/Bottom Core Former feet per Minute
Factor7 Face Resin GPM 2.30%
Factor8 Core Blender Motor current in percent 2.02%
Factor9 # 2 Dry Refiner Infeed Chip Temperature 1.41%
Factorl0 Face Ratio Of Shavings Setpoint 1.35%
Factorll Out Of Press Board Width 1.23%
Factorl? Press Temperature Zone (2-3) 1.19%

Core Resin Usage in Percent
Factorl3 Core Resin Percent Solids OD Wood 0.96%




Predictive Model

Logistic Regression

logit[6:] = log, % where 6, = probability of occurrence of the event s
Ioge _ﬂ0+ﬂlx +ﬂ2X2+ +ﬁnxn
1
0i - 1+ e—[ﬁo+ﬂlxl+ﬂzxz+'"+ﬂnxn]
] fa | |

+ No assumption on linearity and normality

Bayes’ Theorem I

p@.y) _ p(9)p(y|0)

p(@ly) =
p(y) p(y)
% Prior and posterior probability distributions
s Extend logistic regression model in a Bayesian framework (Xu and Akella 2008)

+ Use Bayesian Inference Methods for coefficient estimates (8)




Bayesian Logistic Regression

In Mathematics I

p(y=0|x,M,D)= Qp(y= 0,b[x,M,D)fb

= qp(y= 0|x,b,D)p(b| M, D)Tb
where
p(y=0]x,b,D) = {1+ exp[-b"x]}"*

Priors I

<+ Non-informative prior: (8) o constant
“» Prior 1. Uniform prior distribution P

/

% Informative prior:

; p(B lu,0?) o (B py

exp

“» Prior 2: Gaussian prior distribution A = 202 )




Predictive Model
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Results

Significant Factors

Significant Factors MOR 1B

Factorl

Factor3
Factor4
Factorb5

Factor6

Factor8

Factor12 -

Actual Line Speed
Factorl Actual Value Distance (01-28) left/right
Forming Line Mat weight Set Point

Actual Line Speed :
Factorl Actual Value Distance (01-28) left/right :
Forming Line Mat weight Set Point I
I Top/Bottom Face Former Pounds per square Foot
| MPot (01-05,07-09)pressure Track 4
Factor4 MPot (01-06) pressure Track 1 + 7 | Factor3 ThCt pressure frame 22 leftright
1 Percent of speed 1
|
|
1
1
|
|
1

Factor5 ThCt pressure frame 05-06 right Water Injection Control Output

MPot (01-06) pressure Track 1 + 7
Steam Injection Control Output Factor4 ( )P

Top Face Former feet per Minute Steam Injection Control Output

Factor6 #1/#2 Dry Refiner Infeed Chip Temperature Top Face Former feet per Minute
Top/Bottom Core Former feet per Minute Factor6  #1/#2 Dry Refiner Infeed Chip Temperature
1 Top/Bottom Core Former feet per Minute
\ Factor12 Press Temperature Zone (2-3) \ Factors _
\\ Core Resin Usage in Percent \\ Core Blender Motor current in percent




Results (MOR)

Misclassification and Correct Classification rates for validation dataset with MOR as Response

Classical Logistic Regression Bayesian L_oglstlc Regressmn Bayesian Logl_stlc Regressmn
(uniform prior) (Gaussian prior)
Run Correct Correct Correct
Misclassification Classification Misclassification | Classification | Misclassification |Classification Rate
Rate for y=0 Rate for y=0 for y=0
1 0.32 0.67 0.32 0.67 0.32 0.67
2 0.29 0.76 0.29 0.76 0.29 0.76
3 0.24 0.81 0.23 0.83 0.24 0.81
4 0.22 0.8 0.22 0.8 0.22 0.8
S 0.28 0.74 0.28 0.74 0.28 0.74
6 0.3 0.74 0.3 0.74 0.3 0.74
7 0.32 0.74 0.31 0.78 0.31 0.78
8 0.34 0.72 0.33 0.72 0.34 0.72
9 0.34 0.61 0.33 0.65 0.34 0.63
10 0.3 0.65 0.3 0.63 0.3 0.63
Average 0.3 0.73 0.29 0.73 0.29 0.73




Results (I1B)

Misclassification and Correct Classification rates for validation dataset with IB as Response

Classical Logistic Regression Bayesian L_oglstlc Regressmn Bayesian Logl_stlc Regressmn
(uniform prior) (Gaussian prior)
Run Correct Correct Correct
Misclassification Classification Misclassification | Classification | Misclassification |Classification Rate
Rate for y=0 Rate for y=0 for y=0
1 0.3 0.69 0.29 0.69 0.3 0.69
2 0.22 0.72 0.21 0.74 0.21 0.74
3 0.19 0.82 0.18 0.88 0.19 0.82
4 0.26 0.75 0.26 0.73 0.26 0.75
S 0.15 0.87 0.14 0.88 0.15 0.87
6 0.21 0.86 0.2 0.86 0.2 0.86
7 0.18 0.81 0.18 0.81 0.18 0.81
8 0.19 0.77 0.19 0.77 0.19 0.77
9 0.21 0.78 0.21 0.78 0.21 0.78
10 0.21 0.8 0.19 0.82 0.21 0.8
Average 0.21 0.79 0.2 0.8 0.21 0.79




Summary

EM and MI-MCMC achieved more precise results for imputation

Bayesian Logistic Regression identified significant

factors influencing low strength properties

On average, Bayesian logistic regression had a correct classification

rate for low strength properties of /3% for MOR, and 80% for |B
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